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"hslracl-Optimiz,ltilm of th.: ;nial pu,kling load of .:omrosit.:. .:ylindrieal shdls through a
judi,i,'us ,hl,i" "I' laminatel:lllltigural1on is "I'ten asso,iat.:d with in,r,'as,d imp.:rfe,tion s.:nsitivity.
Current approa,h.:s of combining p'lStPuekling th,,'ry with an optimization program demand
lughly s,'phlsti,ated analytical and ,'omputational m.:th"ds. yet arc insutlicientlo rwvid.: a rational
them.: that c;m P': used t" derive g.:neral deSIgn guidelines. The present raper is an attempt 10
e\r!<'re the SUhl.:.:t matter via a dilTer.:nt .I\l:nu.:. such that various nvnlin.:ar clTeets may he
umkNllod in phySl.:alterms which relluin: rdativdy little in the way of advanced mathematics and
eomplltation. The raper rror,"es Il' study the pwblem usmg a simple. hut intuitively aprealing,
r,',hl"d sl1lfne" ;malysis of ,ylinder hudling whi,h r,wgni/l:s th, physi,al,'hara,teristks pr.:sent
in a,!\.uH.:cd p,,,thud,ling and us,s thcm in an equivaknt linear, eig.:nvalu.: analysis.

Tlus investig'ltion highlights th.: specilk rel;ltionship hetween laminat.: stilfn.:ss raram,'lers,
dli",'n<.:y of hlh.:kJing r,si"t.tIl,·c and imp,'rli:,tlon Sl'nSltlvity in rosthu,kling ddi'rmation. It is
ohscn,d th;lt the critcria for optimality and reduced imrcrfc.:tivn sensitivity are often orposed to
eaeh lither. The reduel'll huekling load apl','ars tll h.' a useful imlic'ltor li'r evalnating qualitatively
Ihe n:l;ltive iml'erfceti'lIl sensitivity of vari"lls n,';Hly oplimal laminated shell designs whio.:h would
he of great Interest to design,'rs. Another interesting fcatun: is the analytio.:al study in terms of
houn,k-II g"neric orlhotropk o.:onst;ln" wluefl furnishes a gcn.:ral theme on the isslle. i\ com
prdl,'nsin' dlScn"ion on the theorelll";t1 foundal1on of the reduo.:cd sttll'lIess appnladl ami (It her
sillular apl'ro,im;lIe methods i, prllvidClI. II has h,'ell sllllwn throu~hout thts paper that the proposcd
physlo.:al aPl'ro;l\:h Sllo.:ecssfully ;IIH! """istently e\plains most of the ohso.:rvatlllns reportcd m the
hterature which were hased on nonlinear posthudding analyses.
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INTRODL'CTION

The buckling behaviour of circular cylindrical. laminated. composite shdls unda a'(ial
compression is an important design consideration. as a significant feature of composite
technology is tailoring capability and optimization of performance through the additional
degrees of freedom thereby introduced. viz. fiber orientation and distribution in each
lamina. laminae thickness, stacking sequence and material properties. It is obserwd that
optimization with respect to the linear buckling load introduces significant changes in
postbuckling behaviour which, in most cases. may prove highly undesirabk from a practical
performance point of view because of the large increase in imperfection sensitivity. This
has prompted interest in studying the effects of fiber orientation, stacking sequence and
lamina thicknesses on the imperfection sensitivity of axially compressed laminated com
posite shdls.

Current approaches generally apply Koiter's asymptotic peturbation method or non
linear imperfect equilibrium analysis in conjunction with an optimization program for
estimating imperfection sensitivity of the generated optimal kllninate designs. These com
bined postbuckling and optimization exercises rely heavily on intensive. but physically
remote. analytical and computational methods which neither help in undestanding the
physics of the structural behaviour nor olTer scope for incorporation into the ~ksign

synthesis process. Naturally, the complexity of the problem and a large number of design
variabks make a parametric study a prohibitively expensive exercise. In the Iiteratun:.
numerical results for very select examples are reported which 'lfI: insutlicient to provide
general design recommendations.

The present paper is an attempt to explore the subject matter via a dit1\:rent avellue
such that various nonlinear dlccts may be understood in physical terms which relJuire
rdatively little in the way of advanced mathematics and computation. l/ere. the aim is to
highlight the application of certain striking physical ideas to the compkx issue of imper
fedion sensitivity. which arc susceptible to study in a relatively simpk and unsophisticated
manner yet led to sound hypotheses. With this philosophical hackground. this paper
proposes to study the present problem using a simple. but intuitively appealing. reduced
still'ncss analysis of cylinder buckling first introduced hI' Croll and Batista (!l)X I) for
isotropic shells.

The method is based on the concept that modal coupling and imperfections. in the
post huck ling range. will result in the erosion of the initial stahili/ation provided by the
lJuadratic ein.:umferential membrane energy component. I',. the result of Poisson bulging
in the fundamental state. This has led to the simple idea that a lower limit to the huclding
strength can be provided by a reduced critical load which can he obtained by ignoring the
specilk energy component. V,. in the linear buckling analysis. The present study attempts
to establish the reduced buckling load as a useful measure of imperfection sensitivity in the
optimi/ation process. Emphasis is placed on devdoping a consistcnt physicalmodcl which
can he used to derive gcncral design guidelines.

This papcr is organi/cd in the following manner. Firstly. a brief n:view of the relevant
literature and a summary of the philosophy of tht: reduccd stitl'ness mcthoJ is presented.
An energy method for classical and reduced stilrness buckling analysis ofaxially ..:ompressed
cylinders is extended to laminated orthotropi..: composite shells. The results of the pwposed
physical approach arc compared with those ohtained hy nonlinear analysis (Similses and
Sheinman. IllS2) and its theoretical foundation is discusscd in greater depth in view or
recent analytical/numerical findings. The impcrfe..:tion sensitivities or a number or optimal
laminated shell designs, available in the literature, arc examined using the pwposed
criterion. Finally. the analysis is presented in a generic form which est;lblishes a set of
physi..:al parameters affecting imperfection sensitivity and ellicien..:y oflalllinates and. there
fore. ofl'ers a rational theme for usc in design.

It has been shown throughout the paper that. based on nonlincar posthuckling
analysis. most of the observations reported in the literature can be explained via a reduced
stiffness buckling model contained in a remarkable contribution by Croll and Batista
(1981 ).
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BACKGROUND LITERATURE

The stability of thin. circular cylindrical shens has received considerable attention over
past decades. It is possible. but somewhat impractical. to provide an overview of the large
amount of theoretical and experimental results available on this topic and thus attention is
focussed strictly on the title paper. The interested reader is referred to an excellent review
by Simitses (1986) covering recent developments in this area.

The two general approaches for imperfection sensitivity analysis of composite shells.
namdy. Koiter's asymptotic perturbation method and full nonlinear equilibrium analysis
of the imperfect shell. are briefly reviewed. Some of the optimization studies are summarized
and attempts at approximate analysis of the problem are enumerated.

Using Koiter's (1945) method. Tennyson and Hansen (1982) presented a detailed
study on optimum design for buckling of laminated composite cylinders including their
postbuckling response and imperfection sensitivity. They reported that varying the stacking
sequence can more than double the buckling strength. However. the increased load capa
bility was also asssociated with increased imperfection sensitivity which was measured by
computing Koiter\; h-coct1kient for the particular design of interest. Some of the results
arc more interesting than surprising. For example. two graphite'epoxy shells made of
[9000 90J and [090,90/0J laminates. respectively. have similar linear buckling loads but
suhstantially dilrcn:nt postbuckling characteristics; shell I. [90/00/90]. exhibiting stable
p\)sthm:kling heha\iour (h > 0) while shell 2. [0/90/90;0], is unstable (h < 0). Sun (19~7)

considered a typical four-ply laminate. [90, O. -11.90]. and studied the dlects of fiber
orientation. O. on bm:kling strength and imperfection sensitivity as measured by the h
l'Oetlkient in the presem;e of various imperfection magnitudes. His results cannot be easily
rati\lllali/cd. Selllcllyuk and Zhukova (19X7) also studied various laminated shell designs
using Koiter's general method and observed a relationship between the h-codlicient and
the ratios of the longitudinal <lnd transverse elastic moduli to the shear modulus, the larger
lhl:se t\\'o ralios, the l\lwer the imperfection sensitivity. This will be examined in the following
sections. These observations \.·Ollld not be generalized with confidence because of a limited
Iltllllber ofexamples. Naturally. the complexity of the problem ami a large number ofdesign
variabll:s make parametric study prohibitively expensive and impractical.

Sheinlllan and Simitses (1977) presented a complex but more accurate numerical
solution scheme for nonlinear stability analysis based on the von Karman-Donnell non
linear kinematic relations. The computational procedure for obtaining the critical limit
I)()int load of imperfect shells employed a Fourier series type ofseparated solutions; through
the Galerkin procedure the lidd equations were reduced to a system of ordinary dilTerential
equations and subsequently solved by a !inite difference scheme. This method was extended
to study the post limit point response of imperlect isotropic shells (Simitses and Sheinm'ln.
!\)X2). Using this procedure. Simitses e( al. (1985) established the imperfection sensitivity
of composite shdls through plots of critical (limit) loads versus imperfi:ction amplitude.
The larger the drop in critical load value with increasing amplitude. the greater was the
sensitivity. Simitses and has associates have studied the problem in great depth and provided
useful nUllIerical results for comp.trative purposes. The interesting Icatures of their results
will be discussed later.

Sun and Hansen (19H8) combined Koiter's general method with an optimization
program and reported th.tt this introduced significant changes in the imperfection sensitivity
of shells. This suggests the existence of multiple optimal laminate configurations with
varying degrees of imperfection sensitivity and post-buckling response. This notion will be
examined thoroughly in the rest of this paper. The following two optimization studies are
selected for our purposes. Kobayashi e( al. (1982) presented optimal designs of laminates
composed of three types of layers, axial (0 =0). circumferential (0 = 90) and helical
(0 < (] < 90). The optimization was carried out with respect to the number. thickness and
stacking setluence of the three hasic layers. It was found that many laminate designs
exist. corresponding to an optimal buckling load. Nshanian and Pappas (1982) applied a
m.\thematic~lI programming technique to obtain the optimal ply angle and through-thick
ness distrihution in symmetric laminates. In cases of axially loaded cylinders. the existence
of multiple optimal solutions was reported.
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The in,,'reasing rdiance on numerical methods has motivated many rese~lrI.:hers ttl ftlcus
on fundamental conceptual notions of postbuckling beha\iour and to develop simpliticd
design methods. Here. a cursory reviewal' some such attempts is presented. At present. a
discussion of the reduced stitrness method (Croll and Batista. 19~ I) is avoided as it \\ ill he
dealt with. in detail. later in the paper. Calladine and Robinson (Inil) strongly ad\oc~lted

a simplified treatment of shell buckling problems. Taking a clue from the formal analog)
between Koiter's imperfection sensitivity formula and that of Ayrton and Perry (18:-<6) for
a simple column. they explained important physical aspects of imperfection sensitivity. The
notion they proposed was the steady growth of imperfection amplitude as the compn:ssi\e
load on the shell increases. bringing progressive changes in the stress resultants throughtlut
the shell; collapse occurs when the largest stress n:aches a value equal to the classical
bu,,'kling stress. an idea similar to the g:ro\\th of bending stress in Ayrton and I\:rr) nllumn.
This simple approach allowed them to write load-imperfection relations qualitati\e1y similar
to that of Koiter's (1945): quantitatively. the agreement between the two was extremel)
pOtl r. Walker and Sridharan (19:-;0) argu~'d that. since the cunature. and. in particular.
II' R term in the ein:umti:rential strain increases a shell's resistance to initial bm:kling
compared with the corresponding tlat plate. the same curvature term is also responsible for
its marked imperfection sensitivity. It was. therefore. suggestcd that a reliable lower bound
to buckling strength of a shell is its strength as a tlat plate. with curvature playing only thc
role Ill' biasing the shcll to buckle in a mode correspllllding to its lowest critical stress. Thus,
the neutral equilibrium or lower b\lund stress is equal to the buckling stress \If the prismatiC
flat plate structure whose sidc is equal to the developed h,dfwa\e length of the buckled
qlinder.

It may be slightly out of Clllltext to mention the appproximale buckhng analysis of
pressurized cylinders. yet it highlights an interesting ti:atun:. Croll (Jl>75) nplained that
unstahk postcritieal hehaviour is the result of loss of memhrane stitrness in the presence
of imperfections and proposed a quasi-inextensional line,ll' energy analysis ignoring the
eontrihution from membrane energy in order to obtain a lower hound huckling load. Wittek
(1')82) followcd a similar idea in a tinite element analysis and studied the rdation hetwcen
imperfection magnitude and loss of thc memhrane energy cOlllponent. This approach could
not he extended to axially loaded cylintlers since. in that Glse. the memhr,lne ,Ind hendlllg
energy provide roughly equal contrihuti\lns to the resistance to critical deform:ltion. Thus.
IH:glecting the memorane strain energy would lead to a lower hound prediction or 50t~" of
thc classical buckling luad I'ur thc whole ra nge of prohlem varia hies. which does not contilrm
with cxperimental ooservations.

RUHleED STI rT:-.:r:ss MODEt. OF SIIELI. lit leI\: 1.I ~(;

It is vay dear that current approaches in this area rely heavily on complex analytical
and cumfHlt:ttional methods which du not hdp in understanding the physics of structural
behaviour. Croll and Batista (19S I) made a significant cuntrioution by introducing a
reduced stilrll\.:ss analysis I'or cylinder buckling which. in essence. was an application or
Donnell's (llJ34) rationale for coupling modes in the postbuckling regimc. The approach
is based on the very simple notion that it is dillicult to dose something that is not already
there at the outset. Thus. an analogy is drawn in which the loss of carrying capacity of a
shell in the e1:lstic pllstbuckling regime represents the loss lll'certain components of its initi,li
stifrness which should be capable of explanation in terms ol'initial problem paramet..:rs. i.e.
geometry. deformation and associated energy terms.

The basic philosophy or th..: reduc..:d stifl'ness methud is summarized very brietly in
symbolic form and details can be found clsewh..:r..: (Croll and Batista. IlJ8 I). The quadratic.
incremental pot..:ntial energy. I'> llf a given shell suhjected to axial compression may he
writt..:n as.

(I)

where ['c is internal strain energy and I'" is the work done by stresst:s in the fundamt:ntal state
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Fig. 1. Coordinate axes.

on quadratic membrane strains. Vw can be decomposed into its axial and circumferential
components. V, and VI' respectively. thus

Vw = V,- VI. (2)

It is to be noted that VI' known as the quadratic circumferential membrane energy. is a
result of Poisson expansion (bulging) occurring in the fundamental state. Now. substituting
for Vw from eqn (2) into eqn (1)

(3)

and regrouping terms leads to

(4)

Thus. it is the term VI which contributes to initial stabilization. Reiterating Donnell's (1934)
arguments and using a physical model. Croll and Batista (1981) demonstrated that, in the
postbuckling regime. coupling of the periodic critical deformation mode with an axisym
metric mode of half the axial wavelength will result in erosion of the initial stabilization
provided by VI. This led to the simple idea that a lower limit to the shell postcritical stiffness
would be provided by a reduced incremental quadratic potential energy,

(5)

obtained by eliminating VI; the buckling load thus obtained is referred to as the reduced
buckling load. This reduced stitfness model is found to predict closely the mode triggering
buckling in a large number of experiments and to provide reliable lower bounds.

ANALYTICAL FORMULATION

The Rayleigh-Ritz energy method presented buy Croll and Batista (1981) is extended
to the buckling analysis of hlnlinated. composite circular cylindrical shell of length L.
radius R. and thickness t. simply supported at the ends (Fig. I).

The membrane strain vector. e. is expressed as the sum of the prebuckling strain. E.
and incremental linear and quadratic membrane strain vectors, e' and e". respectively. while
N. N. ,,' and ,," are correspondingly associated stress vectors. Here subscripts "x" and "('
are used to indicate axial and circumferential coordinate axes, respectively. Thus. the
components of the strain vector are

e, = E,+e',+e':

el = EI+e;+e;'

e" = E" +e'" + e::I • (6)
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Nt = Nt + n'tn';

N, = N, +n; +n~

Nt( = N,,+n:,+n';,. (7)

Using Donnell approximations. the strain-displacement relations may be written as

CII I (cv) ev 1 ell 1 (hl')~ I (£111')~
, I I " " (8)

e, = ex' e, = R c¢J + II' • e" = ex + Re¢J' e, =:2 Dx • e, = 2R 1 c¢J .

Here. II. Vand II" denote displacements in the axial (x). circumferential (I) and radial (=)
directions. as shown in Fig. I. The curvature terms are defined as

(9)

According to the general stability theory (Croll and Walker. 1972). the quadratic
components. V1• of the total potential energy control the stability of equilibrium of the
fundamental path and lead to an eigenvalue problem yielding the critical stable state of the
shell. The incremental strain energy. Uc • may be written as (Croll and Batista. 1981)

I i'I1

' I I' I~"UC = ., (n:£': +n;e; +n:,£':,)r de/> dx + ., (m,k t +m,k, +m"k,.,)r d¢J dx.
.... U II - U II

in contrast to classical analysis where the work done by the axial load is given as

Croll and Batista (1981) restructured this term as Vw = V, - V" where

and

1i'i 2

'V, = } (II;' E,)r d¢ dt.
- (j (j

(10)

(II )

( 12)

COlIstitutiL'e relation
Classical lamination theory. based on Kirchhoff's hypothesis. gives force (N) and

moment (m) resultants by the following constitutive relations (Jones. 1975):

{N} [Aii Bil]{e} '.
111 = B

li
D

li
k '.J = 1•. ".3 ( 13)

where A ij • Bii and Dr) (i. j = 1.,.,.3) represent the stretching. coupling and bending stiffness
matrices of a laminate and are defined as follows

( 14)
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Here. QII = E,.d. Q~~ = E~!d. QI~ = V12Q22. QJ3 = G and d = 1- VI~\'~I' The details of
the derivation can be found elsewhere (Jones. 1975). It is assumed that the in-plane stiffness
matrix. At}. has orthotropic form. i.e. A I J = A ~J =O.

The linear membrane theory is usd to derive the prebuckling strain vector. E:

(15)

where

(16)

Displacemellt !1If1CtioflS
The classical. simply supported boundary conditions. i.e. (~i x = 0./11' = m, = \' = 0

and S, = const. are assumed which are satisfied by the following displacement functions

jnx .
II = U cos --- Sin i¢

L

. jnx\' = V Sin L cos i¢

ru . jnx , 'l
II' = .. Sin -i:- Sin /(1'. (17)

These boundary conditions can be exactly satisifed by symmetric laminates with 1J" = 0
and cross-ply laminates with BII and 8 22 the only non-zero terms in the 8" submatrix. In
the case oran antisymmetric angle-ply. with 8 11 and 8 21 the only non-zero terms in the 8

'1

suomatrix. the force boundary conditions arc violated.
Substituting the assumed strain displacement and constitutive relations and appro

priate derivatives or the displacement functions into eqns (10) and (12). energy expressions
arc derived explicitly and arc listed in Appendix A. Stationarity or the quadratic. incremental
potential energy with respect to the kinematically admissible displacements (11.1'.11') gives
the rollowing conditions

i:V, aV2 ()V,
_-':=-=--=0
vU iW cJW

which lead to a set of linear homogeneous algebraic equations of the form:

(18)

( 19)

where

K22 = A 22 i 2+A J ).2

. . 8 22 i J
1('1 = =A,,/---"' -- R

(20)
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where

"' _ I .4., ., . c . c ·4
11." - A cc + lidD , I"'· +_(D'c+_D ,,)/ .... +D cc / ]

C = ).c+(Allic+Alc()C,

C, = (A I c), c+ A cciC)Cc

. jrrR
.... = -Z-·

The buckling criterion is the existence of nontrivial solutions of eqn (19) which IS

dictated by the vanishing determinant of [K]. Thus.

det [K] = O. (21 )

Equation (21) generates axial buckling load spectra for various axial and circumferential
wave numbers: the minimum of which is the classical. linear buckling load of the shell.

The reduced critical load is obtained by ignoring the energy term V, in the quadratic
potential energy which. in turn. is equivalent to ignoring term N,c, in the e.xpression for
""n in eqn (20) and subsequently invoking condition (21).

BOUNDS ON TilE REDUCED CRITICAL LOAD

The ctfects of shell length, L, on Jhe reduced critical load, N" were studied: for this
purpose. the lower and upper bounds corresponding to L =""fj and L = 0, respectively.
were derived. It is to be noted that the classical buckling load. N., is illlkpendent of length.

The buckling load depends on internal strain energy and the load potential such that

(22)

II' we assume that the critical wave numbers (i,j) corresponding to the classical <tnd reduced
loads are the same, so that the total energy in the two cases also remains the same. the ratio
of the two loads can be written as

N, V,- V V,
I

,
(23)= .-- = -

N. V, V,

Using the appropriate expressions for V, and V, from Appendix A and substituting for E,
and E, from eqn (15) gives

V, (A 11P + A c1 i c)C1
V, = X2{1-+A~ICI-)+A ,;i'1c, .

As L -. x,). = jrrR/L -+ 0 and therefore eqn (24) results in

V, A c1 (C1
V, = A;-;i-z-c','

(24)

(25)

Substituting for C, and C: from (16) and using eqn (23), one can lind that, in the limit
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L ..... x, and (:!6)

Of course, L = x is a hypothetical case and our basic assumption. as stated above, may
not be true, in general. but it clearly illustrates the point that the reduced buckling load
would decrease with increasing length of slenderness, similar to that of an Euler column.
In the derivation of the reduced buckling load. NT' the Vt energy term is neglected which,
in effect, implies that the prebuckling circumferential strain, £" and hence the Poisson's
effect, is ignored. It provides a clue to the observed relationship.

The other bound can be obtained by setting L = 0 in eqn (:!4). Thus

V, AI~C~

V, = I+A1ICI

and the limiting ratio of the reduced to classical loads becomes

Nt A 12C2
~._. = 1- ----.
No: I+AI1CI

(27)

(:!8)

which will always have a finite value on account of Poisson's effect. For an isotropic shell.
A II = A 22 = £/( 1- v2

) and A 12 = vA II, which upon substituting in eqn (28) results in

For \. = 0.3, Nt/Nc = 0.953.

N y~

~-'. = I - -.,-1 .
Nc _-v

(29)

EjJideflCY of hllckliflg resistance (~ll(lmifl(l(es

For a given orthotropic composite material. the maximum buckling load attainable is
(Tennyson. 1987)

(30)

and is referred to as the buckling resistance of an equivalent isotropic laminate which is
independent of lamination sequence. Thus. the ratio of the classical buckling load to the
equivalent isotropic buckling load is defined as the efficiencY.IJ. of the laminate in buckling,
I.e.

(31 )

The equivalent isotropic properties. clastic modulus. E,. Poisson's ratio. \'." and shear
modulus. G,. are defined in terms of the invariants of the composite material as follows:

where

VI = ~(3QII +3Q22+2QI~+4QJd

V 4 = ~(QII + Q22 +6QI ~ -4QJ1)

V S = i(Q11 +Q22- 2QI2+ 4QJJ)' (32)
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Table I. Comparison of reduced stiffness and nonlinear analyses
isotropic shells. E = 10.5 x 10· psi. v =0.3. R = -I in .

Shell
., 'm
I. I. P

no. R { LR (Simitses and Sheinman. 19M2) Red. stiff. model

250 I 0.25S (8) 0.105 (6) 0.396 (10)
2 250 3 0.595 (5) 0.113 (5) 0.168 (6)
3 250 5 0.719 (-II 0.117 (-I) 0.108 (5)
4 250 8 0.873 (3) 0.326 (3) 0.069 (3)
5 250 10 o.~m (3) 0.392 (3) 0.062 (3)

6 1000 0.-1-16 ( 1.\) 0.022 (9) 0.237 (15)
7 500 0.3-1-1 (10) 0.076 (8) 0.309 (12)
8 250 0.2-1S (S) 0.106 (6) 0.396 (10)
9 80 0.157 (5) 0.151 (5) 0.557 (7)

Numbers in brackets denote circumferential wavenumber.

NUMERICAL RESULTS AND DISCUSSION

In this section. the basic proposal that the ratio of reduced to classical buckling load.
p. can be treated as a measure of imperfection sensitivity is examined with the aid of
numerical examples.

Comparison with nonlincar analysis
The effectiveness of the reduced stitfness model is studied by comparing its lower bound

predictions. 1'. with results of nonlinear analysis of imperfect isotropic shells (Simitses and
Sheinman. 19X2). The lower bound. II. limit point. ;.1. and minimum postlimit point loads.
;.111. the last two values as obtained by Simitses and Sheinman (19X2). arc presented in Tahle
I for a variety of shell geometries. The results of nonlinear analysis correspond to s = I
and an asymmetric imperfection of amplitude 0.1 S.

The lower bound load and corresponding wavenumber arc in remarkably close agree
ment with ;.111 for shells 2 and 3 and close to ;.' for shell 7. The lower bound prediction is
nonconservative for shells I. 9 and overly conservative for shells 4.5. Shells 1-5 indicate a
consistent drop in I' with increasing length. and thus follow the predicted trend. The
implication of this relationship is in contrast to Simitses and Sheinman's conclusion. that
is, since ),' and ).'" increase with increasing length, longer shells arc less imperfection sensitive.
In all cases, the buckling mode associated with the reduced buckling load is unique and
always consists of a single axial halfwave (j = I) and a number of circumferential waves
often close to those corresponding to classical buckling. This mode is often observed to
trigger buckling in experiments (Croll and Batista, 1981). At this point, it is worth men
tioning some potentially serious drawbacks of nonlinear numerical analyses (Croll. 1975),
namely numerical instability. convergence to some misleading complementary equilibrium
paths in the vicinity of limit points, and nonconservative results due to incorrect sign of
the critical imperfection in the case of asymmetric bifurcation. The dependence of p on
imperfections is not explicit but is rather based on physical arguments and, therefore. testing
its validity by comparison with the results of nonlinear analysis for one particular set of
imperfections may not be justitled.

Example prohlems
Three representative problems on buckling of laminated cylinders are considered. The

geometry and material properties arc described in Tables 2 and 3. Firstly, a symmetric

Table 2. Shell geometries and laminate configurations

R { N,
E~ample Lamination Material (in.) (in.) LR (Ib in. -')

(90. -0. -0. (0) boron-epo.,y 7.50 0.0212 1.2.5 417.5
2 (90. O. O. 90) graphite-epo~y 2.82 0.0171 -I -190.3
3 (0. O. 0) glass ·epoxy 5.9-1 0.0360 -I 630.9
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Table 3. Material properties

£, £. G IV,
Material (10" psi) (10· psi) (10· psi) \'1:: DO :r " p (I O-~)

Boron e. 30 2.7 0.65 0.21 0.207 0.30 0.304 0.29 0.97 0.135
Graphite e. 20.5 1.4 0.59 0.26 0.287 0.26 0.236 0.31 0.96 0.168
Glass e. 7.5 35 1.25 0.35 0.699 0.68 0.342 0.82 0.29 0.265

angle-ply laminate is analyzed and variations of tT and p with respect to eare shown in Fig.
2. It confirms an earlier observation (Simitses et al.. 1985) that e= 45 is not a good choice
as it exhibits poor efficiency and significantly less p. A steep drop in reduced buckling load
in the vicinity of optima. e~ 20. 70. is observed.

The second example which involves (90. e. e. 90) graphite-epoxy laminates is motivated
by Sun's results (1987) on a similar clamped laminated shell. The p vs eplot in Fig. 3 has
qualitative similarities with Koiter's h-coefficient vs eplots for higher imperfections. e~ 0.2.
0.3 (Sun. 1987. Fig. 10). For example. the b-coefficient has the largest negative value and
thus higher imperfection sensitivity for 0 ~ 60-65'. In Fig. 3. p assumes its minimum value
in the same range. Also. the h-coefficient for (90. O. O. 90) , is higher than (90.90.90.90) and
so is the value of p.

The last example considers (0. O. 0) glass-epoxy laminates. which are similar to those
of Tennyson et al. (1971). The variation of p with e is smoother when compared with
earlier examples.

Impcrlection sellsitil'ity 01' multiple optimallaminatcs
In earlier examples. the thicknesses of the constituent laminae arc assumed constant

and only fiber orientation is varied. In a more general optimiz'ltion exercise. not only the
libcr orientation in a lamina but also its thickness can be considered .tS variable. N'lshani.1O
and Pappas (19X2) and Kobayashi ct al. (19H2) have reported useful results in this area. The
most interesting feature of their work is that for a given total thickness. more than one
optimal laminate can be found such that their linear buckling loads are almost eq ual. As a
designer. it would be of great interest to examine their imperfection sensitivity and select
the safer configuration.
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Fig. 2. Buckling of (0. -0. -0.0) laminated shells.
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Fig. 3. Reduced buckling load and efficiency of laminated shells.

Tank 4 contains results on optimal symmetric laminates of typical designs. which
involve O. 90 and ()' layers. The optimal value. O. and thickness distribution among the
three layers have been obtained for a constant total thickness. ! = I mm and R = 200 mm.
L = 600 mm (Kobayashi e! al.. 19R2). The material properties arc £1 = 1.5 X 104 kgfmm -~.

£~ = 9.62 x 10~ kgf mm ~. G = 5.16 x IO~ kgf mm ~ and v = 0.32. The pairs of laminates
with equal critical load, such as 1-2. 3-4. 5-6 etc. exhibit very different reduced critical
loads. The bending stiffness matrices. Dij, for such a pair of laminates arc found to have
some distinct features. In both laminates. D I ~ and D I .1 clements are identical and within a
pair

( D II ) (DII).--- X - = (
D 12 allllnalc I D 11 amJn~lh: 2 •

(33)

Within the pair. the laminate with D n > D II always has the higher value of p. For example.
in group 5-6. Table 4, laminate 5 has D n > D II (D II > D~~ for laminate 6) and the value
of p is more than double that of 6. These findings suggest that the laminate with higher
hoop bending stiffness (Dd is less imperfection sensitive. This fact. which had earlier been

Table 4. Buckling analysis of 1,lminated cylinders

Shell (N,)
no. Lamination (Kgf mm -I) p "

[90 (0.2). 32 (0.3)1 11.99 0.35 0.69
2 (0 (0.2).58 (0.3)1 12.07 0.17 0.69

3 [90 (0.15). 29 (0.35)J 13 0.37 0.75
4 [0 (0.15).61 (0.35)( 13.26 0.15 0.76

5 [90 (0.1).25 (O.4)J 13.75 0.39 0.79
6 [0 (0.1).65 (0.4)] 13.81 0.15 0.79

7 [25 (0.4).90 (0.1)j 11.23 0.17 0.64
8 [65 (0.4).0 (0.1») 10.37 0.28 0.59

All laminates are symmetric about their midplane and only the half-laminate
geometry is shown. The fractions in brackets denote the thickness of the
respective lamina.
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Table 5. Reduced stiffness analysis of laminated cylinder

Shell ,V"
no. Lamination (kgfmm-') p "

[60. O. -60J 9.04 0.19 0.9:',
[30. 90. - 301 9.27 0.15 0.94-

3 [0.55. OJ 7.16 0.3:' 0.73
4 [90. 35.90J 7.16 0.:'3 0.73

S [90. O. 45] 7.:'5 0.47 0.74
6 pO. 0.901 7.01 0.:'5 0.71

7 [60.90.01 6.90 0.50 0.70
8 [0.90.451 7.:'5 0.:'7 0.74

9 [55. O. O. - 55) 15.78 0.:'6 0.90
10 [35.90.90. -35] 16.00 0.16 0.9:'

II [55. O. -55. 90J 15.47 0.18 0.89
12 [45. O. -45. 90J 14.57 0.15 0.84

All laminates arc symmetric about their midplane and only the upper
halves of the laminates are shown. Each lamina is 0.125 mOl thick.

pointed out by Tennyson and Hansen (1982) using Koiter"s theory. is now supplemented
with a more physical explanation.

Table 5 contains more examples of laminates with almost equal buckling load and
different imperfel:tion sensitivity. In this group. lamimltes with consl<lnt lamina thickness.
II = 0.125 mm. L = 600 mm and R = 200 mm are considered. Examples 1-2 and 9-12 arc
exactly as reported by Kobayashi et al. (19lQ) while. in examples 3 -R. the laminates arc
assumed symmetric rather than antisymmetric us reported in the original puper. The reason
is that the assumed displacement functions in our simple energy method do not satisfy
houndary conditions for antisymmetric laminates due to extension-twist coupling. i.e.
nonzero fl ll and Be.! terms. Our conjecture about the relation hetween the relative mag
nitude of hoop hending stiffness und imperfection sensitivity is. in generul. satisfied by
laminate pairs with nearly equul buckling loads. Laminutes 3--4 are an exception.

Table 6 summarizes results on optimal symmetric laminates (Nushanian and Pappas.
19R2) of constant totul thickness. t = 0.2 in. and shell radius. R = 6 in. for two sets of the
parameter. Z = 60 and 1500. The materiul properties are E l = 30 X IOf. psi. E! = 0.75 x 10"
psi, G = 0.375 X 10" psi .Ind v = 0.25. For the first set, Z = 60, umong luminates 2 and 3
which have almost equal buckling louds. luminate 3 is preferable due to a higher value of
p. Laminates 3 und 6. corresponding to higher values of p, have D l1 > D!e and thus do
not follow our earlier conjecture. At the same time, it is found thut their values of clement
A I ~ are higher than of laminates 2 and 5, respectively. Thus. not only the hoop bending
stiffness but also the Poisson in-plane stiffness term. A I e' has a marked influence on the
imperfection sensitivity.

Tallh: 6. Reduced stiffness analysis of optimized cylinders

Shell
no.

4
5
6

l'(
Lamination (10' III in .. ') I'

Z = 60
- - ----_...._------_ .._-,._,--,~.~ ..__.~
[22 (O.!)I 0.165 o.n 0.3S
(36 (0.069), 89 (O.031}1 0.403 0.39 0.94
(47 (0.04), IS (0.024), 84 (0.036)) 0.411 0.53 0.96

Z = 1500

[12 (0.1)1 0.169 0.45 0.39
(3S (0.07). 90 (0.03)1 0.279 0.11 0.65
[.e (O.O;:!3), 0 (O.ll47), 73 (0.03)1 0.341 0.30 0.79

All l<1minates are symmetric about their midplane and only the upper half is shown. The
fractions in brackets are the respective lamina thicknesses.
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Remarks
The basic ideas behind the proposed approach are discussed in the light of some of the

analytical results recently reported in the literature.
The reduced stiffness model provides a lower bound load beyond which. in the advanced

postbuckling regime. the shell is expected to have stable equilibrium. The shell can buckle
at such a load level due to the presence of larger imperfections and stiffness loss in modal
coupling. In fact. Pedersen's (1974) findings on advanced postbuckling behaviour ofimper
fect shells support such a line of thinking. He reported that the presence of relatively larger
axisymmetric imperfections decreases the bifurcation stress significantly. but. at the same
time. stabilizes advanced postbuckling behaviour in the sense that shells could support
larger loads than the buckling load before collapse occurs. This held true even in cases
where initial postbuckling behaviour. in Koiter's sense. indicated an unstable bifurcation.
Sun's results (1987) on a clamped (90. e. -0.90) laminated cylinder follow a similar trend.
He found extreme sensitivity to smaller imperfections and more stable postbuckling. marked
by a positive h-coeHlcient. combined with large imperfections for a wide range of fiber
orientations. O. Simitses and Sheinman (1982) reported for shell 6 in Table I that with
increase in imperfection amplitude. i."' increases slowly while i. 1 decreases drastically and
both values approach each other. Eventually. for ~ = 4. a very large imperfection. both
become almost identical. i.e. i.' ~ i."' ~ 0.08.

Recently. Geier and Rohwer (1989) studied the comparative postbuckling behaviour
of an optimized shell panel. as reported by Zimmermann ( 1982). against a reference using
a nonlinear finite element program. Optimized and reference laminates consisted of 16
layers with liber orientations of [(±26.1),(±55.8LL and [901(,J. respectively. The load
deflection behaviour of the optimized design (Figs 13 and 14 in Geier and Rohwer. 1(89)
was marked by a severe load drop ofalmost 50%. indicating extreme imperfection sensitivity
when compared to the reference design. in spite of the fact that the linear buckling load of
the optimized pand was almost twice the reference value. Reduced stilfness analyses of
cylindrical shells of the ahove-mentioned optimized and reference configurations. respec
tively. provide the following results: huckling loads. N,. = 35,48 and 17.36 N mm I. lami
nate elliciency. 'I = 0.% and 0,47. and reduced critical load ratio. p = 0,48 and 0.79.
Material constants were taken from Zimmermann (1982). The prediction of imperfection
sensitivity of the optimized design (p = 0,48) using the reduced stiffness modd is in close
agreement with accurate. nonlinear finite clement analysis. In the case of the optimized
laminate. significantly less hoop bending stiffness. D~~. and exceedingly large in-plane
Poisson's stiffness. II I~. compared to the reference design is noteworthy. reinforcing the
notion regarding the relationship between imperfection sensitivity and laminate stiffness
parameters. The buckling mode corresponding to the reduced buckling load. most often.
consists of one long axial wave. a fact that is further verified by Geier and Rohwer (1989).
who reported that advanced postbuckling is generally characterized by one deep buck!.:.

Becker el al. (1982) analyzed the nonlinear behaviour of two 8-ply cylindrical panels
of configurations. (90. ± 45. 0). and (90.0b. respectively. using a STAGS-C code. For
these two laminates. they found nondimensional buckling load 01'45.4 and 33.3. and a ratio
of nonlinear collapse to huck ling load as 0.71 and 0.88. respectively. Thus. the lirst laminated
panel. with higher buckling load. seems to be less reliah!.: in the nonlinear range. The
reduced stiffness analysis of two shells of identical laminates. material and geometry.
estimates the posthuckling load-carrying capacity in terms of pas 0.74 and 0.9X and the
laminate efliciency. '/. as 0.65 and 0,48. respectively. which is in reasonahly close agreement
with accurate analysis. Interestingly. the hoop bending stiffness. D~" is identical for hoth
laminates but the in-plane stiffness. II I" for the first is quite large compared to the second.
which seems to make it more imperfection sensitive.

The coupling of modes further complicates the issue. In contrast to classical
approaches. Hunt ci al. (1986) explored the problem using a mathematical concept of
symmetry breaking. The recognized harmonic buckling modes for axially loaded cylinders
arc. by nature. symmetric. but combinations of these may lead to asymmetrical deformation.
the Yoshimura pattern. The effects of the symmetries. which appear in the buckling modes
but not in the final deformed shape and thus not in the underlying governing differential
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equations, have revealed various interesting features of this complex problem. They reported
that interaction between any chequerboard mode and its axisymmetric counterpart, which
have well separated critical loads on the fundamental path, is responsible for symmetry
breaking effects and associated severe imperfection sensitivity. This reinforces the point
that multi-mode interaction is an inherent and inescapable part of cylinder buckling and
one cannot rely on remoteness of a potentially interacting mode on the fundamental path
as insurance against severe destabilizing effects. Thus. no single mode alone represents a
good Rayleigh-Ritz approximation, since none accommodate the fundamental underlying
asymmetry. Therefore, h-coefficients computed on the basis ofa single mode approximation
(Tennyson and Hansen, 1982; Sun, 1987) cannot reliably be used for predicting imperfection
sensitivity. on the ground that the presence of complicated but pronounced modal coupling
effects may result in a behaviour very far from single mode analysis. Hunt et al. (1986)
complimented the reduced stiffness model in their words. Croll (1981) associates the
destahili::ation and subsequeflt restahili::ation of cuhic and quartic energy terms with a
particular quadratic term (V,) lind thus gets results from a linear eigenmlue analysis thllt
compare well with experiment.

The discussion highlights the complexities of postbuckling and imperfection sensitivity
which certainly cannot be encapsulated by the reduced stiffness model in a precise manner.
At the same time. this discussion substantiates the ideas behind this physical model of
imperfection sensitivity by quoting similar observations from various numerical/analytical
studies. In many cases. the proposed simple analysis is found to predict the behaviour
mechanism remarkably well. For example. shell 3. in Table I. undergoes snap-through
instability at ;.1 = 0.719 (n = 4) and modal coupling brings down its strength to p = 0.108
(n = 5) which is also confirmed by computer analysis, ;.m = 0.117 (n = 4). Therefore, it is
maintained that the reduced critical load can serve as a useful indicator in guiding the design
optimization process. Observing the etlccts of fiber orientation. laminate configuration and
material properties on various energy terms. particularly the one which will be eroded in
postbuckling, provides a beller understanding of the problem and justifies the application
of the proposed approximate method.

GENERIC REDUCED STIFFNESS ANALYSIS

In earlier examples, analyses arc limited to specific material constants, viz. graphite
epoxy. glass-epoxy, etc., which do not provide a comprehensive understanding of para
metric dependence of imperfection sensitivity on orthotropic material constants. Therefore,
the present analysis is extended and described in terms of three bounded generic orthotropic
constants (Kuo and Yang. 1988). namely, generalized rigidity ratio, D*. generalized Pois
son's ratio. I:. and principal rigidity ratio. :1. They arc defined as

(34)

and the bounds arc

0< D*::::; I

0.12 < f. < 0.65

0<:1::::;1.

The buckling loads Nc and N" in this formulation. are nondimensionalized in the following
way:

SAoS 27-11-n
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(35)

This treatment explores buckling behavior for the complete range of material parameters
and furnishes very general conclusions in this regard. The force-displacement relations can
be written in terms of these three global constants as described in Appendix B. The procedure
for obtaining classical and reduced buckling loads remains exactly the same as described
earlier. We can rewrite eqn (24) in generic terms by replacing Ai] by AI} and using appropriate
expressions for Ai; from Appendix B. The resulting expression for V,j V, is substituted back
into eqn (23) such that the ratio of reduced to critical load. p. becomes

[
ED* ;. Z+ 'Xi Z ]= I - . , " , f.D*.

P 1.-(2-E-D*-)+rxED*i-
(36)

This expression is valid for homogeneous orthotropic materials and 0 = O.

Results and discussion
At first glance. the generic expression (36) shows that an increase in generalized

Poisson's ratio. E. or rigidity ratio. D*. would cause a significant decrease in p. The generic
constants for three common composites are reported in Table 3. The buckling loads are
obtained for shell 3 of Table 2 and reported in Table 3. The comparison of p values shows
that the gl'lss--epoxy shell is more imperfection sensitive than those made of boron or
graphite epoxy composites. This substantiates similar observations made by Khot (1970)
and Semenyuk and Zhukova (1987). The parametric dependence of efliciency and imper
fection sensitivity on generic constants is reported in Figs 4-·7 for a shell geometry Lj R = 2.
Rjt = 250 and t = 0.016.

It is observed in Fig. 4 that, with increasing D* (rx. = const). p decreases and etliciency
improves in monotonic fashion. When I: is increased from 0.2 to 0.6. the p and '1 curves
drop comparatively but the nature of the variations remain qualitatively the same. The
nature of the p vs De relation remains largely unchanged in Fig. 5. An increase in rx from
0.6 to 0.9 improves efficiency but causes a relative drop in fl. Figure 6 reveals that variations
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in p with respect to c( (D· = const) are insignificant when compared to the efliciency which
improves with increasing ~. In Fig. 7, both p and" decrease with increasing 1-:. A relative
increase in ~ improves effkiency significantly yet p remains largely unchanged for a wide
range of I:.

The findings of gencric analysis can be summarized as follows. The efliciency and
imperfection sensitivity both increase with increasing D·, The generalized Poisson's ratio
has the worst effect as elliciency decreases and sensitivity increases with increases in its
value. The principal rigidity ratio has the most benign efrects; its increase improves efTIciency
significantly and imperfection sensitivity remains largely unchanged. Thus, a desirable
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laminate is one which has higher IX, smaller D* and smallest possible E. Using the expressions
listed in Appendix B. we can write

(37)

This immediately substantiates our conjecture that laminates with higher D:: (i.e. higher
IX) and lower A I ~ (i.e. lower f. or D*) exhibit less imperfection sensitivity and further explains
observations regarding relative imperfection sensitivity of multiple optimal laminates.

Semenyuk and Zhukova (1987) pointed out that Koitcr's h-cocllicient was rdated to the
ratios (EI/G) and (E~/G), such that the larger these two ratios, the lower the imperfection
sensitivity. It was suggested that optimizing the fiber orientation for the linear buckling
load somehow decreases these ratios and, in turn, increases the imperfection sensitivity.
The reduced stiffness approach provides an explanation for this. Substituting for Q" from
the Notation section into eqn (36), the expression for D* can be rewritten as

* (~'I~E~/d)+2G (v!1ld)(EcIG)+2D =---.------- = -----------.----
(lid) JE--:i; (lid) J(iJG)(Ec/G)'

(38)

It can now be concluded that smaller values of D* would be associated with higher values
of (EI/G) and (E~/G) and would thereby exhibit less imperfection sensitivity. figure 4
shows that optimization involving greater efliciency would require highcr valucs of D*.
which is opposite to the requirement of reduced imperfection sensitivity. This dearly
supports Semenyuk and Zhukova's (1987) results.

CONCLUSION

It is realized that highly sophisticated nonlinear, computerized analyses. available in
the literature, are not able to provide a consistent physical model whieh might guide
optimization procedures and, therefore, avoid undesirable postbuckling responses. The
present paper is a comprehensive attempt to establish a rational theme using the reduced
stiffness method. There is no intention of replacing existing work but rather of recognizing
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the physical characteristics present in advanced postbuckling and use them in an equivalent
linear. eigenvalue analysis.

Some of the noteworthy conclusions are the following. The reduced stiffness model
provides a relationship between laminate stiffness parameters' efficiency of buckling resist
ance and imperfection sensitivity in postbuckling deformation. Commonly. laminates with
higher hoop bending stiffness and lower Poisson in-plane stiffness A 12. are expected to be
less imperfection sensitive. In generic terms. laminates with higher principal rigidity ratio
and lower generalized rigidity and Poisson ratios are favourable candidates for more stable
postbuckling response. Optimization of the buckling load through a judicious choice of
laminate configuration is often associated with increased imperfection sensitivity. It is
observed that the criteria for optimality and reduced imperfection sensitivity are often
opposed to each other. since an increase in laminate efficiency requires a corresponding
increase in generalized rigidity ratio which. in turn. destabilizes the postbuckling behaviour.

The proposed physical approach successfully and consistently explains most of the
observations reported in the literature which were based on nonlinear postbuckling analyses.
This investigation recognizes a set of generic physical parameters and highlights their
specitic relationships with optimization and imperfection sensitivity. The reduced buckling
load appcurs to be a useful indicator for evuluating qualitatively the relative imperfection
sensitivity of various nearly optimal laminated shell designs at the conceptual rather than
the final design stage.
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APPENDIX A: QUADRATIC POTENTIAL ENERGY

Strain enerqr
The strain energy. U,. is the sum of its membrane (Um ). bending (Uh ) and coupling (UJ components, i.e.

(AI)

where

C
U", = 2l<' 1..1 "I. 'u' -2." ,,;'U( IV -iV) + A ,,( IV -iV)' +A ,,(I.v+iU)']

CIV'[ ., 1'" D ., 4D ""JUh = 21<.' D,,!. +_lJ"t !. + ", + I." A

(A2)

and C = Rnl./2.

Load potemialterm.l·
The load potential can be written as the algebraic sum of the work done in the axial and circumferential

prebuckling defornl'ltions. V, and V,. respectively:

CW'
V, = 4R,-[N,P+(A"I.'+A"i')E,]

CIV'
V, = ~R' [A"I.'+A"i']E,.

APPENDIX B: STIFFNESS MATRICES IN GENERIC TERMS

(AJ)

The nondimensional stretching and bending stin'ness matrices for a symmetric angle-ply can be obtained in
the following manner (Kuo and Yang. 1988):

(BI)

The results are

,-i" = G-D.}"-(0.-2)S'+0.

A" = G-D· )s'-(O. -2)c'+ O·



Imperfc:ction sensitivity of composite shells

where

c = cos 0 and s = sin O.

The orthotropic invarients are defined as

In terms of generic constants.

_ 1(3 )V, = 8 ; +3'1+20-

O. = ~G H+8f.0--W-)

_ I(I )V, = 8 ; +7.-4f.0-+20- .
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(82)

(B3)

(B4)

Thc buckling rcsistance of an cquivalcnt isotropic laminate can be wrillcn in terms of the gencric constants using
eqns (30). (32) and (84).


